`
cgs1999
  • 浏览: 530033 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

嵌套For循环性能优化案例

阅读更多
1 案例描述
某日,在JavaEye上看到一道面试题,题目是这样的:请对以下的代码进行优化
for (int i = 0; i < 1000; i++)
	for (int j = 0; j < 100; j++)
		for (int k = 0; k < 10; k++)
			testFunction (i, j, k);

(注:为了同后面的内容一致,这里对原题目进行了部分修改)

2 案例分析
从给出的代码可知,不论如何优化,testFunction执行的次数都是相同的,该部分不存在优化的可能。那么,代码的优化只能从循环变量i、j、k的实例化、初始化、比较、自增等方面的耗时上进行分析。
首先,我们先分析原题代码循环变量在实例化、初始化、比较、自增等方面的耗时情况:
变量 实例化(次数) 初始化(次数) 比较(次数) 自增(次数)
i 1 1 1000 1000
j 1000 1000 1000 * 100 1000 * 100
k 1000 * 100 1000 * 100 1000 * 100 * 10 1000 * 100 * 10

(注:由于单次耗时视不同机器配置而不同,上表相关耗时采用处理的次数进行说明)
该代码的性能优化就是尽可能减少循环变量i、j、k的实例化、初始化、比较、自增的次数,同时,不能引进其它可能的运算耗时。

3 解决过程
从案例分析,对于原题代码,我们提出有两种优化方案:
3.1 优化方案一
代码如下:
for (int i = 0; i < 10; i++)
	for (int j = 0; j < 100; j++)
		for (int k = 0; k < 1000; k++)
			testFunction (k, j, i);

该方案主要是将循环次数最少的放到外面,循环次数最多的放里面,这样可以最大程度的(注:3个不同次数的循环变量共有6种排列组合情况,此种组合为最优)减少相关循环变量的实例化次数、初始化次数、比较次数、自增次数,方案耗时情况如下:
变量 实例化(次数) 初始化(次数) 比较(次数) 自增(次数)
i 1 1 10 10
j 10 10 10 * 100 10 * 100
k 10 * 100 10 * 100 10 * 100 * 1000 10 * 100 * 1000


3.2 优化方案二
代码如下:
int i, j, k;
for (i = 0; i < 10; i++)
	for (j = 0; j < 100; j++)
		for (k = 0; k < 1000; k++)
			testFunction (k, j, i);

该方案在方案一的基础上,将循环变量的实例化放到循环外,这样可以进一步减少相关循环变量的实例化次数,方案耗时情况如下:
变量 实例化(次数) 初始化(次数) 比较(次数) 自增(次数)
i 1 1 10 10
j 1 10 10 * 100 10 * 100
k 1 10 * 100 10 * 100 * 1000 10 * 100 * 1000


4 解决结果
那么,提出的优化方案是否如我们分析的那样有了性能上的提升了呢?我们编写一些测试代码进行验证,数据更能说明我们的优化效果。
4.1 测试代码
public static void testFunction(int i, int j, int k) {
		System.out.print("");	// 注:该方法不影响整体优化,这里只有简单输出
	}

	public static void testA() {
		long start = System.nanoTime();
		for (int i = 0; i < 1000; i++)
			for (int j = 0; j < 100; j++)
				for (int k = 0; k < 10; k++)
					testFunction(i, j, k);
		System.out.println("testA time>>" + (System.nanoTime() - start));
	}

	public static void testB() {
		long start = System.nanoTime();
		for (int i = 0; i < 10; i++)
			for (int j = 0; j < 100; j++)
				for (int k = 0; k < 1000; k++)
					testFunction(k, j, i);
		System.out.println("testB time>>" + (System.nanoTime() - start));
	}

	public static void testC() {
		long start = System.nanoTime();
		int i;
		int j;
		int k;
		for (i = 0; i < 10; i++)
			for (j = 0; j < 100; j++)
				for (k = 0; k < 1000; k++)
					testFunction(k, j, i);
		System.out.println("testC time>>" + (System.nanoTime() - start));
}

4.2 测试结果
1、测试机器配置:Pentium(R) Dual-Core CPU E5400 @2.70GHz 2.70GHz, 2GB内存;
2、循环变量i、j、k循环次数分别为10、100、1000,进行5组测试,测试结果如下:
第1组 第2组 第3组 第4组 第5组
原方案 171846271 173250166 173910870 173199875 173725328
方案一 168839312 168466660 168372616 168310190 168041251
方案二 168001838 169141906 168230655 169421766 168240748

从上面的测试结果来看,优化后的方案明显性能优于原方案,达到了优化的效果。但优化方案二并没有如我们预期的优于方案一,其中第2、4、5组的数据更是比方案一差,怀疑可能是循环次数太少,以及测试环境相关因素影响下出现的结果。

3、重新调整循环变量i、j、k循环次数分别为20、200、2000,进行5组测试,测试结果如下:
第1组 第2组 第3组 第4组 第5组
原方案 1355397203 1358978176 1358128281 1350193682 1354786598
方案一 1343482704 1348410388 1343978037 1347919156 1340697793
方案二 1342427528 1343897887 1342662462 1342124048 1336266453

从上面的测试结果来看,优化后的方案基本符合我们的预期结果。

5 总结
从案例分析和解决过程中的三个表的分析可知,优化方案一和优化方案二的性能都比原代码的性能好,其中优化方案二的性能是最好的。在嵌套For循环中,将循环次数多的循环放在内侧,循环次数少的循环放在外侧,其性能会提高;减少循环变量的实例化,其性能也会提高。从测试数据可知,对于两种优化方案,如果在循环次数较少的情况下,其运行效果区别不大;但在循环次数较多的情况下,其效果就比较明显了。

6 参考资料
[1] http://www.javaeye.com/topic/762312
[2] http://www.javaeye.com/topic/632481
2
1
分享到:
评论
2 楼 cgs1999 2012-07-19  
iceblooded 写道
方案二的优势其实并不明显,我把数值同时都提高了一个量级 循环数都乘10,结果方案一胜出,优于方案二



理论上讲方案二应该会比较快的,但两种方案的区别就在于变量的实例化,且变量实例化的时间非常非常短,实际测试确实会有你说的情况,这个应该同测试机当时的运行状态有关,这也是我对每一种方案要分别做5组测试数据的原因。


正如我文后总结也指出“如果在循环次数较少的情况下,其运行效果区别不大;但在循环次数较多的情况下,其效果就比较明显了”。方案二的优势体现在循环次数非常非常多的情况才会比较明显,具体你可以分别将i,j,k的数值分别提高1万倍或者更高,这样其优势即可体现出来了。
1 楼 iceblooded 2012-07-18  
方案二的优势其实并不明显,我把数值同时都提高了一个量级 循环数都乘10,结果方案一胜出,优于方案二

相关推荐

Global site tag (gtag.js) - Google Analytics